Seminarji Slovenskega drustva za umetno inteligenco 1996
- 9.1.1996
- Claude Sammut (School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia):
An ILP Workbench
- 30.1.1996
- Igor Kononenko, Marko Robnik-Sikonja (FRI):
Nekratkovidno ocenjevanje atributov v regresiji
- 6.2.1996
- Branko Ster:
Prognostika koronarne bolezni z avtomatskim ucenjem
- 19.3.1996
- Jus Kocijan (FE):
Primer identifikacije modela sistema v delovni tocki
- 25.3.1996
- Ruzena Bajcsy (University of Pennsylvania):
Descriptive and Prescriptive Language for Mobility Task:
Are they different?
- 7.5.1996
- Bogdan Filipic (Institut Jozef Stefan in Fakulteta za strojnistvo,
Ljubljana), Mihael Junkar (Fakulteta za strojnistvo, Ljubljana):
Od predprogramiranih strojev k inteligentnim obdelovalnim sistemom
- 14.5.1996
- Bern Martens (Department of Computer Science,
Katholieke Universiteit Leuven, Belgium):
Tutorial on Logic Program Specialisation
- 21.5.1996
- Marko Bohanec (IJS):
Ptah: Sistem za podporo terapevtskih aktivnosti pri hospitalnih infekcijah
- 1.10.1996
- Darko Zupanic (IJS):
Uporaba sistemov za avtomatsko ucenje pri izboru materialnega
para in dolocanju rezalnih parametrov struzenja
- 3.10.1996
- Rainer Decker (GenSym GmbH, Muenchen, Germany):
G2: A Comprehensive Environment for Creating Intelligent
Production Management Systems
- 8.10.1996
- Igor Zelic (Infonet, d.o.o., Kranj):
Avtomatsko ucenje pri diagnosticiranju sportnih poskodb
- 15.10.1996
- Matjaz Kukar, Ciril Groselj:
Aplikacija strojnega ucenja pri diagnosticiranju ishemicne bolezni srca
- 29.10.1996
- Matjaz Gams, Aram Karalic (IJS):
EMA: Inteligentni agent za zaposlovanje
- 5.11.1996
- Marek Perkowski
(Portland State University, Department of Electrical Engineering, USA):
What can Logic Synthesis Offer to Machine Learning?
- 12.11.1996
- Zdravko Pecar (Univerza v Ljubljani, Visoka upravna sola):
Aplikacija metod in orodij umetne inteligence na podrocju managerskega
odlocanja
- 26.11.1996
- France Mihelic, Simon Dobrisek, Ivo Ipsic, Karmen Pepelnjak, Jerneja Gros
(Univerza v Ljubljani, Fakulteta za elektrotehniko):
Predstavitev del v Laboratoriju za umetno zaznavanje
- 3.12.1996
- Rajko Mahkovic (FRI):
Nacrtovanje gladkih poti za mobilne robote
- 10.12.1996
- Damjan Bojadziev (IJS):
Formalna refleksija v umetni inteligenci
-
Claude Sammut
(School of Computer Science and Engineering,
University of New South Wales, Sydney, Australia):
An ILP Workbench
-
Data mining has become a popular research topic in recent years. This
talk describes a project whose aim is to investigate the usefulness of
Inductive Logic Programming for data mining. We focus on software that
is being developed as a test bed for the investigation.
The workbench is centred around a conventional Prolog interpreter.
However, the interpreter as an attached database indexing scheme to
allow rapid access to large relations. In addition, a library built-in
predicates provides the user with a number of machine learning tools
for exploring the data contained in the data base. The ML tools include
attribute/value learning algorithms as well as ILP algorithms.
-
Igor Kononenko, Marko Robnik-Sikonja
(FRI):
Nekratkovidno ocenjevanje atributov v regresiji
-
Ocenjevanje atributov je ena kljucnih tock v strojnem ucenju. Vecina
algoritmov pri ocenjevanju kvalitete atributov predpostavlja njihovo
neodvisnost, zato so neprimerni v problemih, kjer nastopajo med atributi
mocne soodvisnosti.
Na podlagi analize algoritma ReliefF, ki je uspesen pri klasifikacijskih
problemih iste vrste, sva razvila RReliefF (regresijski ReliefF), ki
uspesno odkriva odvisnosti med atributi v regresijskih domenah.
Predstavila bova algoritem RReliefF in poiskuse, s katerimi sva
preverjala njegovo ucinkovitost pri ocenjevanju kvalitete atributov in
ucenju regresijskih dreves.
-
Branko Ster
:
Prognostika koronarne bolezni z avtomatskim ucenjem
-
Avtor bo prikazal rezultate uporabe sistemov: LFC, Assistant-I,
Assistant-R, naive Bayes, semi-naive Bayes, backpopagation,
backpropagation with weight elimination, CART, Fisherjeva
diskriminantna, linearna diskriminanta, kvadratna diskriminanta, K-NN,
LVQ in RBFL (radialne funkcije) na problemu prognostike koronarne
bolezni. Rezultati kazejo na to, da sedanji atributi ne nudijo nobene
koristne informacije za dani prognosticni problem. Poleg tega bo avtor
primerjal rezultate zgoraj nastetih sistemov na nekaterih "benchmark"
podatkovnih bazah.
Jus Kocijan
(FE):
Primer identifikacije modela sistema v delovni tocki
Prikazal bom primer prakticne identifikacije dinamicnega
sistema s posebnim poudarkom na izbiri vhodnega signala,
casa vzorcenja, predhodni obdelavi signalov, izbiri modela in
preskusu njegove veljavnosti. Namen prispevka je osvetliti nekatera
vprasanja, ki so pri opisu identifikacijskih metod velikokrat
postavljena nekoliko v ozadje, so pa nujna v praksi identifikacije
dinamicnih sistemov. Posebej je predstavljena nujnost po iterativnosti
uveljavljenih postopkov, ki lahko privedejo do najboljsega moznega
modela po zadanih kriterijih.
Ruzena Bajcsy
(University of Pennsylvania):
Descriptive and Prescriptive Language for Mobility Task:
Are they different?
In this presentation we wish to address the following problem: What is
the necessary (and possibily sufficient) VOCABULARY that will DESCRIBE
scenes of moving vehicles (traffic scenes) as observed via a TV camera
or cameras and at the same time will serve as a TASK DESCRIPTION
LANGUAGE to command and Autonomous Land vehicle in their driving task.
In other words, will the same vocabulary be sufficient to PRESCRIBE the
Task and the necessary information about the vehicle and its environment
interaction in order to accomplish the driving task. We view this
problem as fundamental to the REPRESENTATION of the necessary dynamical
knowledge/information about the agent (i.e., the car and its driver), the
environment (the road and all the objects on the road, including other
cars), the task and their interactions. The issue of "how to represent"
in our interpretation is how to partition the continuous dynamical
process of the agent/environment/task interaction into discrete
(symbolic) states, events, behaviours and places. While the Descriptive
part is the classical SIGNAL to SYMBOL transformation, in our case going
from visual observations into symbolic decsriptions, the Prescritpive
part is the reverse, that is going form SYMBOLS to SIGNAL, that is
translating the Symbolic expressions into continuous behaviours.
Bogdan Filipic (Institut Jozef Stefan in Fakulteta za strojnistvo,
Ljubljana),
Mihael Junkar (Fakulteta za strojnistvo, Ljubljana):
Od predprogramiranih strojev k inteligentnim obdelovalnim sistemom
Za danasnjo tehnologijo obdelave materialov sta znacilni visoka stopnja
avtomatizacije in ozka specializiranost. Predprogramirani, numericno
krmiljeni obdelovalni stroji so izredno zmogljivi, a hkrati zaprti
in tezko prilagodljivi na spremembe v delovnem okolju. Ob njih
ostaja neizkorisceno bogastvo operaterjevega znanja in izkusenj.
Vecja prilagodljivost, zmoznost ucenja in izpopolnjevanje v casu
obratovanja so zato izzivi za nacrtovalce novih generacij obdelovalnih
sistemov. Uporaba metod strojnega ucenja nakazuje pot k tovrstnim
izboljsavam. V predavanju bo predstavljeno ucenje nadzora procesa
brusenja, izbire brusilnega orodja in vodenja elektroerozijske obdelave
kovin. Delo bo osvetljeno tako z metodoloskega kot z uporabniskega vidika.
Bern Martens
(Department of Computer Science, Katholieke Universiteit Leuven, Belgium):
Tutorial on Logic Program Specialisation
We give a broad and general introduction to program specialisation,
including motivating examples for partial deduction, and related forms
of specialisation, such as functor elimination and generation of most
specific programs. We then provide some insight into the foundations of
partial deduction, including correctness and completeness conditions
from the well-known paper by lloyd and Shepherdson. We illustrate ways
in which they can be ensured.
Next, we elaborate issues related to the on-line control of partial
deduction. We motivate and illustrate the distinction between local and
global control in partial deduction algorithms, point out some
trade-offs, and briefly sketch approaches based on termination analyses,
on characteristic trees, and on a combination of both.
We point out relations between partial deduction and abstract
interpretation as well as unfold/fold transformations. Finally, we
discuss some specific problems related to specialisation of
meta-programs and indicate some solutions. We end with the presentation
of some open problems.
Marko Bohanec
(IJS):
Ptah: Sistem za podporo terapevtskih aktivnosti pri hospitalnih infekcijah
Na seminarju bo predstavljen racunalniski program Ptah za podporo
terapevtskih aktivnosti pri hospitalnih infekcijah. Program smo razvili
v okviru razvojnega projekta "Racunalniski informacijski sistem za
podporo terapevtskih aktivnosti v zdravstvu", ki poteka v sodelovanju s
podjetjem Infonet, d.o.o., Kranj in Splosno bolnisnico Jesenice.
Osnovo za delovanje programa predstavlja zbirka podatkov o hospitalnih
infekcijah, iz katerih gradi casovne vrste vzorcev rezistentnosti
bakterij. Uporabniku (zdravniku) ponuja pet metod za analizo
ucinkovitosti antibiotikov, odpornosti bakterij na antibiotike in
identifikacijo hisnih bakterij. Rezultati analiz, ki so vecinoma
predstavljeni graficno, pomagajo zdravniku pri odlocanju in izbiri
najprimernejse terapije.
Ptah je realiziran v okolju MS Windows in je v fazi prakticnega
uvajanja.
Darko Zupanic
(IJS):
Uporaba sistemov za avtomatsko ucenje pri izboru materialnega
para in dolocanju rezalnih parametrov struzenja
Nacrtovanje rezalnih parametrov je zaradi empiricno dolocenih modelov
algoritmsko dokaj neobvladljivo. Znanje o domeni je vsebovano v mnozici
razlicnih katalogov in smernicah posameznih proizvajalcev. Za vsak
materialni par je potrebno izvajati drage in dolgotrajne meritve, ki pa
zaradi specificnih pogojev ne dajo splosno uporabnih pravil.
Raziskovalci so pri resevanju teh problemov uporabljali statisticna
orodja za analizo podatkov, ki so dala le delne rezultate. Metode
avtomatskega ucenja so odprle dodatne smeri raziskav, saj dopuscajo
moznost odkrivanja kompleksnejsih relacij. Te relacije lahko
predstavimo kot pravila, ki jih nato uporabljamo v procesu avtomatskega
nacrtovanja tehnologije obdelave.
Rainer Decker
(GenSym GmbH, Muenchen, Germany):
G2: A Comprehensive Environment for Creating Intelligent
Production Management Systems
The presentation covers two sections. The first section overviews G2
technologies and how these technologies work together. The second
section covers the overall approach to delivering intelligent
applications with G2. G2 integrates a complete set of technologies for
rapidly building and delivering intelligent applications. The core of G2
technologies includes its concurrent real-time execution together with
object-oriented design.
Integrated into G2 core are its interactive graphics, rules, procedures
and methods, structured natural language and dynamic modeling and
simulation capabilities. These capabilities directly support
development. A next layer for technologies are those needed for
deployment such as client/server networking and connectivity with
on-line data. G2 is designed especially for real-time operation. G2
powerful real-time capabilities have evolved over many years of on-line
application development.
The heart of G2 real-time operation is a scheduling engine for
concurrently executing rules, procedures, models, and other tasks.
Typically many lines of reasoning, models, and other activities are
occurring concurrently. The engine cycles according to a clock "tick"
that can be specified at a millisecond level. Everything has a priority
so that critical items can take action first.
Object-oriented design is the basis of development in G2. Built around
the concept of objects, object-oriented design offers highly reusable
code and an application structure that is much more intuitive to
understand than those built with conventional programming tools. G2
rules, procedures, and methods typically represent a large percentage of
the knowledge contained in an application. The ability to create generic
rules, procedures and methods that apply across entire classes of
objects shortens the development time and makes it easier to read and
maintain the knowledge in the applications.
G2 is designed for connecting to all kind of on-line real-time data.
Gensym offers off-the-shelf bridges for linking to common commercial
systems as well as data interface toolkits for building connections to
data sources.
Gensym products apply intelligence to production management systems to
extend its ability of solving complex problems. G2 performs functions
that would be prohibitively expensive to implement in conventional
process control systems or to program conventionally in supervisory
control systems.
In process control and optimization, intelligent systems apply advanced
technologies to improve operational efficiencies, even across an entire
enterprise. These technologies are complimentary to the proportional
control methods emphasized by DCS and the logical methods that dominate
in PLC. They include algorhitmic techniques using standard mathematical
functions such as linear programming, heuristic techniques that
emphasized experience-based rules, artificial neural networks which use
process data histories to form current estimates and conclusions, and
many other techniques like constraint-directed reasoning, fuzzy logic,
and genetic algorithms.
In monitoring and diagnosis, intelligent systems improve reliability of
data, apply predictive maintenance (meaning that they detect problems
earlier than is possible with conventional systems), and help pinpoint
problem root causes so that they can be more readily corrected. In this
way, they compliment conventional control systems. For the most part,
conventional systems are limited to simple comparisons of signal values
against alarm limits, and they offer little assistance to the operator
in determining why a particular alarm condition exists. Intelligent
systems are also finding increased use in off-line applications,
particularly in conjunction with dynamic simulators used for operator
training and in plant design.
The attractiveness of G2 comes down to its completeness in combining
several powerful technologies for developing an deploying intelligent
systems. Customers report significant development time reductions and
corresponding time to installation or to market. In other words, G2
provides a comprehensive infrastructure for application development.
Igor Zelic
(Infonet, d.o.o., Kranj):
Avtomatsko ucenje pri diagnosticiranju sportnih poskodb
Na seminarju bo predstavljena aplikacija avtomatskega ucenja
diagnosticiranja sportnih poskodb. Sistem je bil razvit v sodelovanju z
dr. Vugo iz Centra za medicino sporta pri UKC. Izvedene so bile
primerjave naslednjih algoritmov: Bayesov klasifikator, Delno naivni
Bayes, Asistent-I, Asistent-R in Asistent-R2. Primerjali smo tako
klasifikacijsko tocnost in informacijsko vsebino odgovorov kot zmoznost
in razumljivost razlage posameznih algoritmov. Zaradi majhnega stevila
ucnih primerov smo algoritmom za avtomatsko ucenje dodali tudi
diagnosticna pravila. Razvita lupina ekspertnega sistema je razvita v
okolju MS-Windows in omogoca manipulacijo in statisticno obdelavo
domene, kontroliran in uporabniku prijazen vnos ucnih in testnih
primerov, testiranje algoritmov ter klasifikacijo novih primerov z
ustrezno graficno razlago.
Matjaz Kukar, Ciril Groselj
:
Aplikacija strojnega ucenja pri diagnosticiranju ishemicne bolezni srca
Ishemicna bolezen srca je eden od najpogostejsih vzrokov smrtnosti v
razvitem svetu, tako da bi bili izboljsave in racionalizacija
diagnosticnih postopkov zelo uporabni. Postavljanje diagnoz poteka v
stirih fazah (glede na opravljene preiskave): (1) status in anamneza,
(2) EKG ob mirovanju in kontrolirani obremenitvi (cikloergometrija),
(3) miokardna scintigrafija in (4) koronarna angiografija.
Diagnosticni proces poteka hierarhicno - naslednja faza je potrebna
samo, ce rezultati prejsnje niso dovolj zanesljivi.
Zdravnikom pa se pri postavljanju diagnoze pojavlja problem - apriorno
ustvarjanje mnenja o pacientu (sugestibilnost). Zato se rezultati vsake
faze interpretirajo individualno, veljavni pa so samo rezultati zadnje
faze.
Algoritmi za strojno ucenje niso podvrzeni subjektivnim vplivom
(sugestibilnost), zato bi lahko upostevali rezultate vseh ze opravljenih
preiskav naenkrat in s tem potencialno izboljsali postopek
diagnosticiranja. Prvi poskusi so ze dali obetavne rezultate, ki jih
bomo predstavili na seminarju.
Matjaz Gams, Aram Karalic
(IJS):
EMA: Inteligentni agent za zaposlovanje
Septembra 1996 se je koncal inovacijski projekt Integrirani
informacijski sistem za izboljsanje zaposlovanja v Sloveniji, najvecji
inovacijski projekt umetne inteligence doslej, polovico financiran s
strani narocnikov. Med stirimi deli sta dva direktno navezana na Odsek
za inteligentne sisteme: Katalog programske opreme in Inteligentni agent
za zaposlovanje. Posebej zadnji je vec kot leto dni v redni uporabi na
Internetu in je bil klican okoli 20.000-krat. Sistem ima okoli 10.000
vrstic, skupaj s podatki in besedili zasega 30M.
Ema - inteligentni(a) zaposlovalni(a) agent(ka) - je zadnji, vrhnji nivo
celotnega sistema, ki poslje elektronsko posto, ko se na primer pojavi
zanimivo delovno mesto pomocnika direktorja. Vsak teden sistem predstavi
okoli 3.000 razpisov za delovna mesta, mozno se je vpisati kot iskalec
dela, tu so stipendije itd.
Marek Perkowski
(Portland State University, Department of Electrical Engineering, USA):
What can Logic Synthesis Offer to Machine Learning?
The lecture will introduce a new approach to Machine Learning that uses
logic synthesis methods close to those used in circuit design, and
especially for Xilink FPGAs. The data to be learned are represented as
Boolean or multiple-valued functions. The input variables correspond to
the features of the image, and the minterms of the function to the
positive or negative samples, or images classified as belonging or not
to the specified category. Multi-category classification is performed
using multi-output, multiple-valued functions.
An interesting property of applying logic synthesis to Machine Learning
is that the functions can be very strongly unspecified, having more than
99% of don't care conditions. This calls for the entirely new approaches
to the algorithm development. Logic-based approaches based on
Sum-of-Products, Exor-Sum-of-Products, and Ashenhurst-Curtis Functional
Decompositions will be compared with the classical approaches of Neural
Nets and Decision Trees.
The method has been successfully used for Pattern Recognition, noise
removal from images, Knowledge Discovery in Data Bases, and automatic
creation of algorithms from data.
Zdravko Pecar
(Univerza v Ljubljani, Visoka upravna sola):
Aplikacija metod in orodij umetne inteligence na podrocju managerskega
odlocanja
Sprejemanje odlocitev predstavlja najzahtevnejso fazo procesa
managementa. Poslovne odlocitve morajo biti vse bolj hitre in natancne,
vsaka odlocitev pa zahteva predhodno tudi vedno vec razlicnih proucevanj
podatkov in informacij. Tukaj nastane velika nevarnost, da manager ne
zeli pridobiti vseh informacij in se raje odloca po svojem instinktu,
ali pa da razpolaga s preveliko kolicino informacij, ki jih zaradi
pomanjkanja casa in premalo razvite tehnologije ne more obdelati tako,
da bi bile maksimalno izkoriscene. Nastalo zagato bi najlazje resevali s
pomocjo primerno prilagojenih informacijskih tehnologij, ki bi morale
biti bolj naravnane na procese odlocanja in resevanja problemov.
Podrocje proucevanj procesov odlocanja in se posebej v kontekstu
sirsih procesov resevanja problemov je relativno mlada znanstvena
disciplina, ki predstavlja v kombinaciji z orodji umetne inteligence
velik potencial za lazje delo managerjev. Na seminarju bodo
predstavljene nekatere ideje in preliminarni rezultati proucevanja teh
potencialov, ki je potekalo v okviru priprave doktorske disertacije.
France Mihelic, Simon Dobrisek, Ivo Ipsic, Karmen Pepelnjak, Jerneja Gros
(Univerza v Ljubljani, Fakulteta za elektrotehniko):
Predstavitev del v Laboratoriju za umetno zaznavanje
1. razpoznavanje slovenskega govora:
- dolocanje optimalnega nabora znacilk
- fonemska segmentacija govora
- jezikovno modeliranje slovenskega govora
- semanticna analiza govorjenih sporocil
aplikaciji:
- sistem za razpoznavanje tekocega slovenskega govora
- sistem za razpoznavanje loceno izgovorjenih ukazov
2. sinteza slovenskega govora:
- grafemsko fonemski prepis besedila
- dolocanje prozodicnih parametrov govora
- sinteza govornega signala
Rajko Mahkovic
(FRI):
Nacrtovanje gladkih poti za mobilne robote
Malo je raziskovalnih podrocij, ki bi v zadnjem casu pritegnila tako stevilne
raziskovalce, kot so jih mobilni roboti. Problemov lokalizacije, navigacije,
nacrtovanja poti, preiskovanja neznanega prostora, pridobivanja avtonomnosti
so se lotili tako robotiki kot racunalnikarji (prevsem AI). Na seminarju bomo
predstavili del problematike in resitev na podrocju nacrtovanja poti, posebno
se gladkih poti. Prikazali bomo voznjo v laboratoriju LMSA razvitega mobilnega
robota.
Damjan Bojadziev
(IJS):
Formalna refleksija v umetni inteligenci
Formalizacija inteligence in zavesti zahteva uporabo refleksivnega
sistema, ki zmore vpogled v lastno delovanje. Tak sistem je nepopoln
in njegov "Goedlov operator" proizvaja neskoncno zaporedje razsiritev.
Operator razsiritve pa bi lahko bil tudi sam refleksiven: z upostevanjem
ucinka lastnega delovanja bi lahko preskocil dele zaporedja razsiritev.
Domneva o obstoju refleksivnega operatorja razsiritve izhaja iz
refleksivnosti postopka, ki proizvede Goedlov samo-referencni stavek,
iz Kleenejevega izreka o rekurziji in delno iz moznosti refleksivne
uporabe meta-cirkularnega interpreterja. Toda iz Turingovih rezultatov
o obnasanju univerzalnega stroja sledi, da "turbo-refleksija", ki bi
lahko preskakovala stopnje obicajne refleksije, dejansko ni mogoca.